Ab initio study on the binding of carbon dioxide to cobalt salen complex

Authors

  • Meliton Chiong, III Materials Science and Engineering Program, University of the Philippines Diliman
  • Francis N. C. Paraan National Institute of Physics, University of the Philippines Diliman

Abstract

Metal-organic complexes, such as metal-Schiff bases, can function as catalysts for electrochemical reduction. In this work we present first principles electronic structure calculations for the adduct formation involving carbon dioxide (CO2) and cobalt salen [Co(salen)] complex. Binding energy calculations show that carbon dioxide forms a stable adduct with [Co(salen)]- complex. The bonding between carbon dioxide and the cobalt metal center involves back-bonding mainly between the metal dz2 orbital and the π* orbital of CO2. An accompanying partial charge transfer from Co to CO2 was observed. This study can be used as a preliminary result to further study the structure and stability of other cobalt-carbon complexes.

Downloads

Issue

Article ID

SPP-2017-3B-05

Section

Computational Physics and Simulations

Published

2017-06-07

How to Cite

[1]
M Chiong and FNC Paraan, Ab initio study on the binding of carbon dioxide to cobalt salen complex, Proceedings of the Samahang Pisika ng Pilipinas 35, SPP-2017-3B-05 (2017). URL: https://proceedings.spp-online.org/article/view/152.